41
Ɛ=1 ɤɟɡɿɧɞɟ 3 ȺɈ ɛɨɥɚɞɵ;
m
Ɛ
ɦԥɧɞɟɪɿ: –
1, 0, +1.
Ɛ=2 ɤɟɡɿɧɞɟ 5 ȺɈ ɛɨɥɚɞɵ;
m
Ɛ
ɦԥɧɞɟɪɿ: –
2,
–
1, 0, +1, +2
Ɛ=3 ɤɟɡɿɧɞɟ 7 ȺɈ ɛɨɥɚɞɵ;
m
Ɛ
ɦԥɧɞɟɪɿ: –
3,
–
2,
–
1, 0, +1, +2, +3
Ⱦɟɦɟɤ
,
m
Ɛ
–
ɞɟΝɝɟɣɲɟɞɟɝɿ ɚɬɨɦɞɵΙ ɨɪɛɢɬɚɥɶ
(ȺɈ)
ɫɚɧɵɧ
ɚɧɵΙɬɚɣɞɵ.
Ɇɵɫɚɥɵ
:
ɟɤɿɧɲɿ ɞɟԙɝɟɣɞɿԙ s–ȺɈ ԛɲɿɧ: n = 2, Ɛ = 0, m
Ɛ
= 0.
x
ɋɩɢɧ ɤɜɚɧɬ ɫɚɧɵ (m
S
)
–
ɷɥɟɤɬɪɨɧɧɵΝ Ϋɡ ɨɫɿɧɞɟ ɚɣɧɚɥɭ
ɛɚΕɵɬɵɧ ɫɢɩɚɬɬɚɣɞɵ
(spin
– «ɡɵɪɵɥɞɚɭɵԕ»
).
Ɉɫɶ ɛɨɣɵɦɟɧ ɬɟɤ ɟɤɿ ɛɚԑɵɬɬɚ ԑɚɧɚ (ɫɚԑɚɬ ɬɿɥɿɦɟɧ ɛɚԑɵɬɬɚɫ ɠԥɧɟ
ɨԑɚɧ ԕɚɪɫɵ) ɚɣɧɚɥɭ ɦԛɦɤɿɧ, ɫɨɧɞɵԕɬɚɧ
m
S
ɛɚɫԕɚ ɤɜɚɧɬɬɵԕ ɫɚɧɞɚɪԑɚ
ɬԥɭɟɥɫɿɡ ɬɟɤ ɟɤɿ ɦԥɧ ԕɚɛɵɥɞɚɣɞɵ:
r
½
. ɋɩɢɧɿ
m
S
= +½
ɫɩɢɧɞɿ
ɷɥɟɤɬɪɨɧɞɵ ɲɚɪɬɬɵ ɬԛɪɞɟ
n
ɛɟɥɝɿɥɟɣɞɿ, ɚɥ ɫɩɢɧɿ
m
S
=
– ½
ɛɨɥɫɚ
ɨɧɞɚ
p
ɛɟɥɝɿɫɿ ԕɨɥɞɚɧɵɥɚɞɵ.
Ȼɿɪ ȺɈ ɟɤɿ ɷɥɟɤɬɪɨɧ (
Ɲ)
ɨɪɧɚɥɚɫԕɚɧ ɠɚԑɞɚɣɞɚ
ɠΡɩɬɚɫΙɚɧ
ɞɟɩ,
ɟɝɟɪ ɛɿɪ ɷɥɟɤɬɪɨɧ ɛɨɥɫɚ
ɠΡɩɬɚɫɩɚΕɚɧ
ɞɟɩ ɚɬɚɥɚɞɵ.
Ⱦɟɦɟɤ,
m
S
–
ɛɿɪ
ɚɬɨɦɞɵΙ ɨɪɛɢɬɚɥɶɞɚΕɵ ɦɚɤɫɢɦɚɥɶ ɷɥɟɤɬɪɨɧ ɫɚɧɵɧ ɚɧɵΙɬɚɣɞɵ.
Ⱥɬɨɦ ԕԝɪɵɥɵɫɵ ɬɟɨɪɢɹɫɵɧɵԙ ԕɚɡɿɪɝɿ ɦɚԙɵɡɞɵ ԕɚԑɢɞɚɫɵ
ɉɚɭɥɢɞɿԙ ɲɟɤɬɟɭ ɩɪɢɧɰɢɩɿ
(1925 ɠ):
ɚɬɨɦɞɚ ɬΫɪɬ ɤɜɚɧɬ
ɫɚɧɞɚɪɵ ɛɿɪɞɟɣ ɟɤɿ ɷɥɟɤɬɪɨɧ ɛɨɥɭɵ ɦΟɦɤɿɧ ɟɦɟɫ.
ɉɚɭɥɢ ɩɪɢɧɰɢɩɿ ԥɪɛɿɪ ɷɧɟɪɝɟɬɢɤɚɥɵԕ ɞɟԙɝɟɣɞɟ ɠԥɧɟ ɞɟԙɝɟɣ
-
ɲɟɞɟ ɷɥɟɤɬɪɨɧɞɚɪɞɵԙ ɦɚɤɫɢɦɚɥɞɵ ɫɚɧɵɧ ɟɫɟɩɬɟɭɝɟ ɦԛɦɤɿɧɞɿɤ
ɛɟɪɟɞɿ. 2.1
-
ɤɟɫɬɟɞɟ ɛɚɫ ɤɜɚɧɬ ɫɚɧɵɧɵԙ ɞɟԙɝɟɣɲɟɧɿԙ ɫɚɧɵɦɟɧ,
ɨɪɛɢɬɚɥɶɞɿԙ ɬɢɩɿɦɟɧ ɠԥɧɟ ɫɚɧɵɦɟɧ, ɚɥԑɚɲԕɵ ɬԧɪɬ ɩɟɪɢɨɞɬɵԙ
ɷɥɟɦɟɧɬɬɟɪɿ ԛɲɿɧ ɞɟԙɝɟɣɞɟɝɿ ɠԥɧɟ ɞɟԙɝɟɣɲɟɞɟɝɿ ɷɥɟɤɬɪɨɧɞɚɪɞɵԙ
ɦɚɤɫɢɦɚɥɞɵ ɫɚɧɵɦɟɧ ɛɚɣɥɚɧɵɫɵ ɤԧɪɫɟɬɿɥɝɟɧ.
2.1-
ɤɟɫɬɟ. ɗɥɟɤɬɪɨɧɞɚɪɞɵԙ ɨɪɛɢɬɚɥɶɞɚɪ ɛɨɣɵɧɲɚ ɬɚɪɚɥɭɵ
ɗɧɟɪɝɟ
-
ɬɢɤɚɥɵԕ
.
ɞɟԙɝɟɣɲɟ
Ⱦɟԙɝɟɣ
ɲɟɥɟɪ
-
ɞɿԙ
ɫɚɧɵ
Ɉɪɛɢ
ɬɚɥɶ
-
ɞɚɪ
Ɉɪɛɢɬɚɥɶɞɚɪɞɵԙ
ɫɚɧɵ
ɗɥɟɤɬɪɨɧɞɚɪɞɵԙ
ɦɚɤɫɢɦɚɥɞɵ ɫɚɧɵ
ɞɟԙɝɟɣ
-
ɲɟɞɟ
ɞɟԙɝɟɣɞɟ ɞɟԙɝɟɣ
-
ɲɟɞɟ
ɞɟԙɝɟɣ
ɞɟ
K (n = 1)
1
1s
1
1
2
2
L (n = 2)
2
2s
1
4
2
8
2p
3
6
M (n = 3)
3
3s
1
9
2
18
3p
3
6
3d
5
10
N (n = 4)
4
4s
1
16
2
32
4p
3
6
4d
5
10
4f
7
14