Иванов, А.А. Автоматизация технологических процессов и производств
102 Глава 4 . Оптимизация параметров ин те грированной системы торая дает некоторую оценку снизу. Эту оценку можно улучшить пу тем приведения матрицы по столбцам (аналогично приведению по строкам). Сумма наименьших элементов по столбцам у. 2ф = 0 + 0 + 1 + 0 + 0=1 . Уточненная оценка снизу: <7= 1А, + 2&, = 7+ 1= 8. В приведенной по строкам и столбцам матрице (табл. 4.7) берем только строки и столбцы, на пересечении которых есть ноль (т. е. ty = 0). Здесь это будут: (1, 4); (2, 3); (2, 5); (3, 2); (4, 1); (5, 2); (5, 3). Подсчитаем увеличение оценки снизу Д (i, j) сложением мини мальных чисел в строках и столбцах: Д(1, 4) = 2 + 3 = 5; Д(2, 3) = 0 + 0 = 0; Д(2, 5) = 0 + 1= 1 (ноль в пересечении не учитывается); Д(3, 2) = 1+0 = 1; Д(4, 1) = 1+ 5 = 6; Д(5, 2) = 0 + 0 = 0; Д(5, 3) = 0 + 0 = 0. Наибольшее увеличение оценки снизу получается для дуги (4, 1) (рис. 4.7). Рис. 4.7. Этапы построения контура с номерами заготовок: а —первоначальный; 6 —промежуточный; в —конечный Исключим 4-ю строку и 1-й столбец из приведенной матрицы и получим матрицу для подмножества [(4, 1)] (табл. 4.8). Оценка снизу для подмножества [(4, 1)]: q - 2 + 3 = 5. Приведенная по строкам и столбцам матрица для подмножества [(4, 1)] представлена в табл. 4.9. Клетки (4, 1) в последних матрицах
Made with FlippingBook
RkJQdWJsaXNoZXIy MTExODQxMg==